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A Dual~Mode Beam Waveguide Resonator and

Frequency Stabilizer at Millimeter-

Wave Frequencies

J. W. MINK, MEMBER, IEEE, AND E. H. SCHEIBE, SENIOR MEMBER, IEEE

Abstract—By applying perturbation theory to one of the higher

modes that may exist in the beam waveguide resonator (also known

as the focused Fabry-Perot interferometer), it can be shown that the

degeneracy of the mode system can be reduced, resulting in two

mode systems with slightly different resonant frequencies. Using
tlds result, a dual-mode frequency discriminator was constructed and

used as a reference element for stabilizing the frequency of micro-
wave sources. The stability of a 34-GHz stabilized source was better
than 1 part in 5X107 short term and better than 1 Part in 1.5X106
long term. The frequency sensitivity of thk dual-mode resonator to

changes in the properties of the dielectric medium between the end

plates was utilized to determine the dielectric constant of gases at 34

GHz with an accuracy of a few parts in 107.

INTRODUCTION

T
HIS PAPER is concerned with only one of the

many possible applications of the beam wave-

guide resonator as a useful circuit component in

a millimeter-wave system. The beam waveguide reso-

nator is an open structure consisting of two properly

shaped reflecting plates separated by many wave-

lengths, as shown in Fig. 1. Deliberate and controlled

dual-mode operation of the resonator, which is the basis

for the useful applications presented here, was studied

in some detail. The study was undertaken when it was

found that an inadvertent distortion in the resonator

resulted in dual-mode operation.

The mode system in the beam waveguide resonator
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Fig. 1. Beam waveguide resonator.
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with spherical reflectors is the same as that of the lens-

type beam waveguide. A brief description of the mode

system is necessary in order to understand the dual-

mode operation of the resonator.

The mode system of the beam waveguide may be

approximated by the following complete set of orthog-

onal functions [1 ]– [3]. These ideal field distributions

are useful for the first few modes if the apertures are

large compared with the operating wavelength.

(1)

or

where

Xl Y, z refer to the x-) Y-, z-axis of a rectangular co-
ordinate system

?2=0, 1,2, . . . “,ZJ = 0,1,2,...

L.”= Laguerre polynomial of degree n and order v

~ = polar angle

*=kz– (2n+v+l) tan-’ J~+*(p/pz)2

i~ = z/kp02

X = free-space wavelength

k=2~/h

p = radial coordinate ~X2+Y2

pz2=po2(l+2L2)

and pO is a mode set parameter determined by the focal

length of the lenses and their separation, and may be

expressed as follows:

~(2 – D/f) Df
PO =

k
(2)

where f = focal length of paraboloidal phase corrector,

and D = separation between phase correctors.

ZL2
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It is desirable when working with the beam wave-

guide or beam waveguide resonator to have a compact

notation to designate each of the beam waveguide

modes, and therefore a convenient and meaningful mode

designation has been devised. An inspection of (1) shows

that the mode field distribution is a product of two in-

dependent terms. One of these terms contains the radial

amplitude distribution and is characterized by the

Laguerre polynomial L,,”. The other contains the angu-

lar dependence and is characterized by either sin Z@ or

cos VI+. The polarization of the electric field is also needed

to completely specify any particular mode. A beam

mode can be identified by the symbol

()

Cos @
ZLn”

sin v+ “

The subscript n indicates the degree and the super-

script v indicates the order of the Laguerre polynomial

associated with the mode radial field distribution. The

second subscript x may be either x or ;y and indicates the

direction of polarization of the transverse electric field.

The quantity within the parentheses represents the

cyclic variations of the field in the ~ (direction, and also

indicates the positions of its maximums and minimums.

Thus for a given n and v, two modes, one having a cos z@

variation and the other having a sin vq$ variation, can

exist for each of the two possible directions of polari-

zation. The mode system is thus four times degenerate,

except in the case where v equals zero where the modes

differ only in polarization.

Furthermore from (1) it can be seen that each mode,

as determined by n and v, has a plane phase surface at

z = O. At any other distance z along the beam waveguide,

the p independent part of the phase shift is

i = kZ – (2}Z + v + 1) tan-’ ZL (3)

and is dependent only upon the particular mode of inter-

est. The p dependent part of the phase shift is

()2

~=;t,! (4)

P%

and is independent of the mode.

THEORY OF THE D[TAL-h~ODE BE.\M

lVAVEGGIDE RESON.iTOR

A resonator based on the beam w-aveguide trans-

mission line is formed b~- placing across the beam a pair

of conducting surfaces w-hich serve as resonator end

plates, and which are shaped to coincide m-ith the phase

fronts of the beam at the points of placement. The con-

dition for resonance is that the phase shift of a v-ave

progressing from one conducting surface to the other

must be a multiple of m. A beam tva.veguide resonator

with one conducting surface or end plate at the plane

z = O and the other end plate separated a distance D

from it is shown in Fig. 1. For a confocal resonator the

end plate at z = D has a paraboloidal shape whose focal

length is D.

A resonator (such as shown in Fig. 1) operating at a

frequency near 9.3 GHz was adjusted to resonate the

LO1 mode in order to measure its diffractiorl loss and to

study its cross-sectional field distribution. The Lo” mode,

\vhich is the lowest loss mode in the resonator (or beam

waveguide), must be suppressed if the LO1 mode is to

survive in the resonator. This was accomplished in two

ways. First, an inspection of (3) shows that there is a

7r/2 radian phase shift bet~veen the Lo” and LO1 modes;

hence, if the length of the resonator is adjusted for the

Lol mode to resonate, the Loo mode will be discriminated

against since it will not be resonant. Secondl, the radial

field distribution as given by the Laguerre polync)mial

is a maximum on the axis for the LO” mode but is zero

here for the LO1 mode. The maximum for the Lol mode

occurs at a radial distance from the axis, which corre-

sponds to the radius where the Loo mode has decreased

to e–l of its maximum value. Therefore, if the coupling

apertures are placed at this radius, the coupling to the

Lol mode will be stronger than the coupling to the

Loo mode. A lossy material may be placed on the axis

of the resonator to further suppress the Loo mode with

a very small effect on the LJ mode since the fields of

the Lol mode are zero on the axis.

The response obtained for this resonator as a function

of frequency- is shown in Fig. 2. The LOO mode was

effectively suppressed, but the double-hump response

shown in Fig. 2 was unexpected. Except for the lc~west

loss mode (Loo), the modes of the beam wave~uide are

four times degenerate, and the response shown-in Fig. 2

can be explained only if the degeneracy of the system of

modes has been reduced, perhaps because of a pertur-

bation in the resonator. Upon close inspection it was

found that the radii of curvature along the two principal

axes of the paraboloidal end plate were different, thus

a distortion or perturbation was indeed present.

FREQUENCY– kc/s

Fig. 2. Higher mode response of resonator.
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The amplitude distribution of the LO1 modes is given

by (1), and is of the following form:

I&, = /@zgol=+)+)2
6 P. Pz

{)

Cos @
.e–l/2(P/P$)2

sin @

Euol = –
d -HxO1=Eo(:)Lol(;Y

Y

e

{)

Cos (j
.e–l/2(P/P.)~

sin + -
(5)

In Fig. 3 the field distribution of the JO’ (sin ~) mode

is shown in dotted lines, and the field distribution of the

JJ (COS d) mode is shown in solid lines. It is evident

from (5) that the various LO1 modes have symmetry

with respect to the principal axes (x and y) of the reso-

nator end plates. The distortion found to exist in the

curved end plates is also symmetrical with respect to

these same axes, and hence the modes do not become

coupled through the perturbation. Instead, the distor-

tion has the effect of increasing the length of the reso-

nator for the (COS ~) mode and decreasing the length of

the resonator for the (sin @) mode, This change of length

for each of the two LO1 modes results in two different

resonant frequencies as shown in the response obtained

in Fig. 2. This explanation of the behavior of the reso-

nator can be substantiated theoretically using pertur-

bation techniques. It can also be verified experimentally.

Fig. 3. Field pattern for LO1modes.

A paraboloid of revolution can be expressed as two

sections of parabolic cylinders superimposed with their

axes perpendicular to each other. Assume that the cur-

vature of each parabolic cylinder deviates from the aver-

age curvature d by an amount f Ad. An equation for

the surface can now be formulated as follows:

Z = ~zd + (%2 — y2)Ad (6)

where

~2=x2+y2

d=~
4jo

Af
Adz—

4j,’

fO = average focal length of parabola.

For small perturbations the following equation (derived

in [4]) holds:

u—lo(.)
f@lHd2-@]2)dv

Av.. (7)

‘o J(PIHTI’+M2W “v
where

cOO= resonant angular frequency of resonator

u = any angular frequency near W.

Av = change of resonator volume due to deformation

and ET and HT are the total unperturbed transverse

fields in the resonator.

Equation (7) was derived for closed cavities; however,

the error involved in using it for an open beam wave-

guide resonator is very small. This error is of the order

of the diffraction loss of the beam waveguide since the

derivation of (7) does not take into account energy lost

by diffraction.

The boundary conditions at the surface of the parab-

oloid require that the tangential electric field be zero

because the surface is assumed to be a perfect conductor.

Although the term involving /ET [ 2 in the numerator of

(7) is not zero, it is very small compared with the term

involving I HT 12 because HT is near its maximum value

throughout Av while ET is very small throughout Av.

The denominator of (7) is a measure of the total energy

stored in the resonator. At resonance equal energies are

stored in the magnetic and electric fields, and hence the

total energy will be just twice the energy stored in one

of the fields. Therefore, (7) can be expressed in terms of

the magnetic field alone, and becomes

OJ-L’J”
fAa~lHT12dv

(8)

The total magnetic field as given by (5) for one of the

modes, the LO1 (COS @) mode, may be written as

()HT=HO ~ e–ll’(pip.)z cos @ .

P.

(9)

Introducing (6) and (9) into the numerator of (8) and

performing the indicated integration yields
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JAI I
2/.urAdD2

P HTsdv= H/-
k2 “

(lo)

In a practical beam waveguide resonator the field ampli-

tude at the edges of the reflectors is extremely small,

therefore the error introduced by allcm-ing the radius of

the reflectors to become infinite is less than 4 percent.

The result given in (10) neglects the finite size of the

reflectors. Introducing (9) into the denominator of (8)

and performing the indicated integration yields

2 Jll
rpD2

/J HT 2dv=Ho2——.
v A

(11)

Therefore, (8) becomes

@—@o 2Ad
——

k“
(12)

@o

If the preceding analysis is also applied to the Lo’ (sin@)

mode, the result is

u—till 2Ad
.

k“
(13)

Coil

Thus, the resonant frequency of each pair of modes is

shifted from the unperturbed resonant frequency by an

equal amount but in opposite directions. Hence, the

degeneracy has been reduced from a four times de-

generacy to a two times degeneracy. Equations (12) and

(13) have been verified experimentally [5] at a fre-

quency of 9 GHz. The expected change of the resonant

frequency was 150 kHz while the measured change of

the resonant frequency was 175 kHz. The agreement

was considered to be quite good since for this case the

perturbation was in the form of a distortion of the sur-

face which could not be accurately controlled.

A perturbation can also be introduced into the beam

waveguide resonator in the form of two small conduct-

ing pins placed on the x-axis of one of the end plates.

One pin is placed on each side of center where the field

intensity is a maximum for the Lol (COS ~) mode. Thus

from (1) it can be seen that this distortion will have a

maximum effect on the Lol (COS @) mode and an ex-

tremely small effect on the -Lol (sin g~) mode since the

perturbation occurs on a nodal line of the latter mode.

For small perturbations the resonant frequency of the

LO1 (sin ~) is assumed unchanged.

This type of perturbation has been found to be just

as effective in reducing the degeneracy of Lo~ modes as

the distorted end plate discussed previously. This latter

type of perturbation has the advantage of ease of

adjustment.

The foregoing analysis indicates that two uncoupled

modes may exist in the beam waveguide resonator

simultaneously. Also, their resonant frequencies may be

separated by an amount determined by the type and

extent of the perturbation introduced into the system

as indicated by (12) and (13).

If the .Lo’ (COS +) mode as well as the ~LO’ (sin #J) mode

is excited, and if the output of each mode is separately

detected, the response of the resonator will be as shown

in Fig. 4(a) where response .4 is for the ~Lol (sin ~) mode

and response B is for the .Lol (COS ~) mode. One mc)de is

polarized in the x direction and the other mode is polar-

ized in the y direction to obtain maximum isolation

between the modes of the dual-mode beam w-aveguide

resonator. Taking the difference between the detected

outputs results in the overall response of the dual-mode

beam waveguide resonator shown in Fig, 4(b). The be-

havior shown in Fig. 4(b) is that of a frequency dis-

criminator, and hence such a resonator can be used as

a control element in millimeter-wave systems.

(a)

(b)

Fig. 4. Response of dual-mode resonator,

PERTURB.ITION THEORY; EXPERIMENT.!L REStTUW

A dual-mode beam waveguide resonator was designed

and constructed with the following parameters. ‘The

operating frequency was chosen to be near 33.75 C, Hz.

In order to insure that the beam modes will be estab-

lished, the radius of the reflecting end plates was chosen

to be 10 cm, which is equal to about 11.2 wavelengths.

The separation of the end plates was 57 cm, which was

also the focal length of the paraboloidal phase-correcting

end plate. A rig-id frame was constructed to support the

reflecting end plates and to allow one of the end plates

to be moved to adjust the length of the resonator. The

flat plate was clamped and then distorted by properly

placed screws to obtain the desired perturbation. The

resonator was adjusted to give the best discriminator

response which occurred with a mode separation of

about 500 kHz. The loaded Q of the resonator was

about 75 000. A photograph of the resonatc)r is shown

in Fig. 5.

The output of the resonator was obtained from two

properly placed and properly oriented crystal detectors

located in the flat plate of the beam walveguide reso-

nator. Each of the detectors must be arranged to b(: re-

sponsive to only one of the two modes present in the

resonator. In practice, one was sensitive only to vertical
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Fig. 8. Short-term frequency stability (1 kc/s per division).

Fig. 9. Long-term frequency stability (2 kc/s per division).

Fig. 7. Block diagram of final stabilization system,
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polarization and the other to horizontal polarization in

agreement with the polarizations shown in Fig. 3. The

detectors were placed in the high field region of the LO1

mode which occurs at a position corresponding to p = p.

or, for the actual resonator being discussed, p = 2.86 cm.

One detector was placed on the horizontal principal

diameter and the other on the vertical principal di-

ameter, Thus for either one of the detectors, the un-

desired mode will have both the wrong polarization and

a nodal line at the detector. Therefore, this arrangement

of detectors provides a minimum of cross coupling in the

detected OU@LltS. The input coupling was obtained by

placing a waveguide on the same principal axis as its

associated detector but on the opposite side of the center

of the end plate. The polarization of each of the input

waveguides corresponds to the polarization of its corre-

sponding output waveguide. The details of the input

and output coupling arrangement for the dual-mode

beam waveguide resonator are shown in Fig. 6.

The discriminator response of the dual-mode beam

\\aveguide resonator as shown in Fig. 4(b) can be used

as a frequency reference in a frequency-stabilizing circuit

for a backward wave tube or a reflex klystron. A block

diagram of such a system for a reflex klystron is shown

in F“ig. 7. An analysis of this system will not be given

here since it can be found in the literature [6]. The

amplifier employed was transistorized and operated

from batteries in order to reduce hum problems. The

dc gain of the amplifier was 7500 with a dynamic output

voltage range of t 30 volts. The output of the amplifier

was floating so that it could be connected in series with

the klystron reflector circuit.

The stability of the stabilized oscillator was measured

by comparing its output frequency with the frequency

of an accurately known and very stable marker fre-

quency. The marker frequency used has a quoted sta-

bility of 1 part in 109 per day. Recordings of both short-

term and long-term stability were made and are shown

in Figs. 8 and 9, respectively. The short-term stability

(Fig. 8) averaged over a 6-minute period is approxi-

mately 0.415 kc/s per minute or better than 1 part in

5 X 107. The long-term stability (Fig. 9) is 20 kc/s per

hour or better than 1 part in 1.5X 106 The steps shown

on the recordings in Figs. 8 and 9 indicate 1-second

averages of frequency and are a measure of the fre-

quency response of the recorder.

APPLICATIONS OF THE STABILIZED SYSTEM

While making the foregoing stability measurements

it was noted that the stabilized oscillator frequency was

very sensitive to turbulence of the medium in the reso-

nator. This behavior suggests the possibility of using the

resonator to measure the dielectric constant of a gas.

The relative dielectric constant of a gas can be calcu-

lated by noting the difference between, the resonant fre-

quency of a resonator when it is evacuated and when it

contains a gas. lft is easy to show that for c, close to unity

TABLE I

DIELECTRIC CONSTANT OF GASES AT 34 GHz

Pressure
mm Hg

o
100
200
300
400
500
600
700
760
800

Air

6;::
137.9
208.0
277.9
347.8
417.6
487.5
530.1
557.4

200

100

0

(,,–1) X1O’ at 20°C

He

0.0
9.5

18.2
26.0
34.7
42.6
50.4
58.4
63.2
66.5

N,

7:::
140.2
210.8
281.7
352.7
423.2
493.8
.537.4
564.8

—

02

0.0
63.9

127.1
189.8
254,6
317.3
380.8
4+4 . I
484.9
508.9

0 200 400 600 60<)

PRESSURE- mm Hg

Fig. 10. Dielectric constant of gases vs. pressure.

Af
%= 1+2-

fo

[) .0
66.3

131.6
197’.9
264.8
331.6
39; .8
46.5.1
504..5
530.7

-.

(17)

where fo = resonant frequency of resonator in a vacuum,

and Af = difference in resonant frequency of the reso-

nator when it is evacuated and when it contains a gas at

a given pressure.

With the dual-mode beam waveguide resonator sus-

pended at only two points in a sealed chamber, the rela-

tive dielectric constant e, vs. pressure was determined

for various gases. The results of these measurements

for air, helium, oxygen, nitrogen, and argon aU_egiven in

Table I and in Fig. 10. The accuracy of these measure-

ments is a few parts in 107. A desirable feature of this

method for measuring G is that the data for any one

gas vs. pressure plots as a straight line,, as shown in

Fig. 10. Therefore, the value of q at atmospheric pressure

can be determined with good accuracy. It ap~ears that

with refinements in the system, particularly an im -

1 The measured values are in good agreement with other pub-
lished results. See Maryott and Buckley [7], for exam pie.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

proved differential amplifier, the accuracy of this

method of measurement could be increased by an order

of magnitude.

Other uses of this system could be Q measurements

at millimeter-wave frequencies, thickness measurements

of dielectric sheets, or dielectric constant measurements

of known thickness sheets. This system has the further

advantage that it may be used over the entire milli-

meter-wave spectrum by changing only the source and

detectors to respond to the desired frequency.
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Some Characteristics of Alternating Gradient Optical
Transmission Lines

WILLIAM H. STEIER, MEMBER, IEEE

Abstract-The effect of adding a negative lens between each pair

of positive lenses of an optical transmission line is calculated. The
negative lens reduces the ability of the transmission line to control the

direction of the light beam. The changes in dominant mode spot size,

allowed bending radius, critical bend periodicity, and sensitivity to
random lateral lens displacements are computed for all ranges of lens
spacings and focal lengths which are stable.

INTRODUCTION

I

N SOIWE of the proposed light guidance methods

which use gas or schlieren-type lenses it may be

necessary to consider a system made of alternately

positive and negative focal length lenses. For example,

if tubular thermal gradient gas lenses [1 ]– [4 ] are used,

which employ a continuous stream of gas flowing

through them, it will be necessary to cool the gas peri-

odically. The region where the gas is cooled will consti-

tute a negative lens of possibly different power from the

positive lens [5]. It is of interest, therefore, to consider

how the periodic introduction of this negative lens

affects the ability of the light guide to control the

direction of the light beam.

In this paper, the effect of adding divergent lenses
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between each pair of positive lenses of a light guide will

be considered. The changes in beam spot size, allowed

bending radius of the guide, and stability of the guide

to lateral lens displacements are calculated for any ratio

of positive to negative lens power. Miller [6] previously

calculated the stability conditions and some optimum

design parameters for alternate gradient focusing when

the power of the positive lenses and the power of the

negative lenses are equal.

BEAM SPOT SIZE

Consider the transmission line shown in Fig. 1. A

negative lens of focal length —j/a is placed between

each pair of positive lenses of focal length f. The positive

lenses are spaced 2~f.

The properties of the dominant Gaussian mode of

this transmission line can be analyzed by the ray matrix

technique of Kogelnik [7]. The ray matrix is the trans-

formation matrix for ray position and slope between the

input and output planes. If the input plane is just to

the right of a positive lens and the output plane is just

to the right of the next positive lens, the ray matrix is

/kL!+l ‘f(2+ba) I 1A ‘1
@(l—p)—l

l+~(a–2–~a) = CD “
f
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